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Abstract

We obtain the complete space of solutions, in the two-dimensional O(3) nonlinear sigma model, which are foliated by Villarceau
circles. In particular, we prove the existence of solitons that admit a foliation by nonparallel circles. This contrasts with the Plateau
context, where solitons foliated by nonparallel circles cannot exist. These solitons carry topological charges that are holographically
computed via the Gauss–Bonnet formula.
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1. Introduction

The differential geometry of surfaces in Euclidean three-space has, even nowadays, plenty of exciting problems.
Many of them are variational ones associated with functionals of the type

B(M) =

∫
M

F(dN ) dA,

acting on a certain class, C, of surfaces, M , in R3 with Gauss map N , where F is a given function and dA is the
element of area, on M , of the metric induced from the Euclidean one. Let us mention a few of them.

(1) In the class of surfaces in R3 with the same boundary, say a finite set, Γ , of regular closed curves, the following
functional is considered:

P(M) =

∫
M

dA.
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The associated variational problem is the Plateau one with boundary Γ , (P,Γ ). Its critical points give soap films or
minimal surfaces (the mean curvature vanishes identically) bounded by Γ (see for example [12,22] and references
therein).

(2) Let C be the class of closed (compact and boundary free) surfaces in R3 with a certain genus. In this space, there
is considered the variational problem associated with the so-called Willmore functional, which measures the total
squared mean curvature or the conformal total energy

W(M) =

∫
M

H2dA,

where H =
1
2 trace(dN ) is the mean curvature function of M . Now, the critical points are named Willmore surfaces

(see for example [29,30] and references therein).
(3) In the class of surfaces in R3 with the same boundary and the same Gauss map along the common boundary, there

is considered the functional

S(M) =

∫
M

‖dN‖
2dA,

which measures the total energy of the Gauss map (see for example [3,4] and references therein). Certainly, the
functional S could be regarded as acting on the class of closed surfaces with a given genus. In this case, bearing in
mind the Gauss–Bonnet theorem and the classical expression |dN |

2
= 4H2

−2G (where H is the mean curvature
function and G is the Gaussian curvature), one has

S(M) = 4W(M)− 4πχ(M),

where χ(M) is the Euler number of M . Since fluctuations do not change the topology, in the class of closed
surfaces with a given genus, the Willmore problem is equivalent to that associated with the functional S.

These variational problems, and others, are interesting not only in differential geometry but also because of
their applications to a wide variety of nonlinear phenomena in physics and mathematics. For instance, a suitable
coupling multiple of functional P gives the classical Nambu–Goto string action, which presents serious difficulties
for quantization. To overcome these troubles, it is necessary to introduce in the string action the extrinsic geometry of
the worldsheets. This was first done by Polyakov [25] and Kleinert [16], by considering the following bosonic string
action on worldsheets M ,

µ1P(M)+ µ2W(M),

µ1, µ2 ∈ R being suitable coupling constants.
On the other hand, the Willmore functional is the main part of the elastic energy action, which is used in the study of

biological membranes, resilient metal plates, interfaces between polymers and so on. In fact, around 1810, S. Germain
proposed a simple geometric model for describing the elastic energy of a surface, given by the Lagrangian whose
density is an even, symmetric function of the principal curvatures (the eigenvalues of dN ). Of course, the simplest
choice is to assume that the Lagrangian density is quadratic, and so, it must involve both the squared mean curvature
and the Gaussian one. Once again, if fluctuations do not change the topology of the membranes, the Gauss–Bonnet
formula implies that the Hooke law for elastic energy is

E(M) = aP(M)+ bW(M),

where a, b ∈ R are constants related to the stretching energy and the bending energy, respectively. Thus, one obtains
the popular Canham–Helfrich model for elastic surfaces [9,15].

Finally, the variational problem governed by the Lagrangian S, that measures the energy of the Gauss maps, is
mainly used in the two-dimensional O(3) nonlinear sigma model (NSM2). This is ubiquitous in physics (see for
example [10,28] and references therein) where it is used in a wide range of fields, from condensed matter physics
(see for example [8,20]) to high energy physics (see for instance [1,2]). The NSM2 plays an important role in string
theories where the model description is applicable. Moreover, it has its own interest in differential geometry since, for
example, it naturally leads to the appearance of partially integrable almost product structures [1,2].

The Plateau problem, (C,Γ ), when Γ is made up of a pair of parallel circles (circles in two parallel planes) in R3

is classical in the theory of minimal surfaces, whose origin might be located in a posthumous manuscript of Riemann
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[27]. In that paper, Riemann found out that the moduli space of all the minimal surfaces, M , with ∂M = Γ foliated
by parallel circles (i.e. contained in parallel planes), consists of the catenoid joint a one-parameter family of minimal
surfaces, nowadays known as Riemann minimal surfaces. Later, Enneper [14] showed the non-existence of minimal
surfaces foliated by nonparallel circles. Consequently, we know the complete moduli space of minimal surfaces that
are foliated by circles.

In [7], the first author showed an algorithm for obtaining, explicitly, the moduli space of solitons in the NSM2
which are invariant under a rotational group of symmetries in R3. In particular, he obtained a wide family of solitons
that are foliated by parallel circles. Therefore, it seems natural to state the following problem:

Problem 1. Are there any solitons in the NSM2 foliated by nonparallel circles?

In this paper, an affirmative answer to this problem is given by exhibiting the moduli space of solitons in the NSM2
that are foliated by Villarceau circles. The main steps in the construction are displayed in the following list:

(1) We show that the NSM2 is an invariant under conformal transformations of the Euclidean metric.
(2) We construct two conformal submersions from a part of R3 into the once-punctured round two-sphere with radius

1
2 .

(3) The fibres of the above-mentioned conformal submersions are Villarceau circles. For each submersion, there
exists a one-parameter group of conformal transformations such that the orbits under its action are the fibres of
the submersion.

(4) Thanks to the principle of symmetric criticality, it is shown that the family of those solutions in NSM2 foliated
by Villarceau circles can be constructed by lifting, through the above-mentioned submersions, a certain class of
clamped elasticae in the once-punctured two-sphere with radius 1

2 .

These examples of solitons in NSM2 foliated by nonparallel circles nicely contrast with the non-existence of such
solutions in the Plateau context (see the above-mentioned result of Enneper). This could be expected after the wide
class of solutions in the NSM2 which are invariant under a rotational group of symmetries [7], in contrast with the
Plateau sigma model, where the catenoid is the only solution admitting such a class of symmetry.

The solitons of NSM2 carry topological charges which, from the Gauss–Bonnet formula, only depend on the
boundary conditions. Finally, in the last section, we compute the curvature function of a Villarceau circle in a soliton.
By evaluating the corresponding total curvature, we compute the topological charge that these solitons carry. It should
be noticed that although that curvature function never vanishes identically, in other words no Villarceau circle is a
geodesic of a soliton, the topological charge of a soliton could be zero.

2. The conformal invariance of the NSM2

The elementary fields in the NSM2 are R3-valued unit vector fields on surfaces, M , which coincide along the
boundary, ∂M , if ∂M 6= ∅. An interesting approach for studying this model, in connection with the differential
geometry of surfaces in the three-dimensional Euclidean space, was considered in [21]. In this context, one identifies
the unit normal vector field, or, more correctly, the Gauss map of a surface in R3, with the dynamical variable of the
NSM2. Needless to say, we are using the standard metric 〈·, ·〉 of R3. To be precise, let us consider the first-order
boundary conditions (Γ , No), where

(1) Γ = {γ1, γ2, . . . , γn} is a finite set of regular closed curves in R3 with γi ∩ γ j = ∅ if i 6= j .
(2) No is a unit normal vector field along Γ such that 〈No(p),Γ ′(p)〉 = 0, ∀p ∈ Γ where Γ ′(p) = γ ′

j (p) if p ∈ γ j .

In this setting, we have a vector field, ν, along Γ determined by Γ ′(p) ∧ ν(p) = No(p), ∀p ∈ Γ .
Let M be a differentiable surface with boundary ∂M = c1 ∪ c2 · · · ∪ cn . We denote by IΓ (M,R3) the space of

immersions, φ : M → R3, that satisfy the following boundary conditions

(1) φ(∂M) = Γ , or φ(c j ) = γ j , 1 ≤ j ≤ n, and
(2) dφq(Tq M) is orthogonal to No(φ(q)), ∀q ∈ ∂M .
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For any φ ∈ IΓ (M,R3), we have its Gauss map, Nφ : M → S2. Therefore, dNφ denotes the shape operator of
φ. Now, the field configuration of the NSM2 can be identified with IΓ (M,R3) and the Lagrangian that governs the
dynamics of the model, S : IΓ (M,R3) → R, measures the total energy of the Gauss maps, that is,

S(φ) =

∫
M

‖dNφ‖
2dAφ,

where dAφ denotes the element of area of (M, φ∗
〈·, ·〉). Roughly speaking, if we identify each immersion φ ∈

IΓ (M,R3)with its graph φ(M), viewed as a surface with boundary in R3, then we propose the study of the Lagrangian
S in the class of surfaces with the same boundary and with the same Gauss map along the common boundary.

If Hφ denotes the mean curvature function of φ ∈ IΓ (M,R3) and we put Gφ = det(dNφ) to name the Gaussian
curvature of (M, φ∗

〈·, ·〉), the following relation is classical

‖dNφ‖
2

= 4H2
φ − 2Gφ .

Certainly, the case ∂M = ∅ can be regarded as a particular one, and we put IΓ (M,R3) = I (M,R3). In this case, some
known solutions to the NSM2 can be obtained from the theory of surfaces with constant mean curvature. For example,
the solitons discovered by Belavin and Polyakov [8] correspond to those surfaces whose Gauss maps are conformal
(round spheres and minimal surfaces). Also, the solutions given by Purkait and Ray [26] are induced by the family of
constant mean curvature helicoids studied by Do Carmo and Dajzer [13]. Anyway, when M is assumed to be compact
and free of boundary, then one can combine the above-mentioned relation with the Gauss–Bonnet theorem to obtain

Theorem 2. Let M be a compact and boundary free surface, then φ ∈ I (M,R3) is a soliton of the NSM2 if and only
if (M, φ) is a Willmore surface, that is, φ is a critical point of the action W : I (M,R3) → R, given by

W(φ) =

∫
M

H2
φdAφ .

This result can be used to generate wide families of compact solitons of the free NSM2 (combine, for example,
with the classes of Willmore surfaces obtained in [5,6,18,19,24]).

The amazing fact is that the NSM2 for any (Γ , No) and the Willmore problem with these boundary conditions [29]
are also equivalent, producing a result similar to that obtained in Theorem 2 for the closed (compact and boundary
free) case. To prove this claim, we observe that the NSM2 action can be written as

S(φ) =

∫
M

‖dNφ‖
2dAφ = 4

∫
M

H2
φdAφ − 2

∫
M

GφdAφ .

However, according to the Gauss–Bonnet formula, we have∫
M

GφdAφ +

n∑
i=1

∫
γi

kφi ds = 2πχ(M),

where kφi stands for the curvature function of γi in φ(M) endowed with the 〈·, ·〉-induced metric, s is the arc length
parameter and χ(M) is the Euler characteristic of M . Then,

S(φ) =

∫
M

‖dNφ‖
2dAφ = 4

∫
M

H2
φdAφ + 2

n∑
i=1

∫
γi

kφi ds − 4πχ(M),

and so, the variational problem associated with S is equivalent with that defined via the action M : IΓ (M,R3) → R
given by

M(φ) = 4
∫

M
H2
φdAφ + 2

n∑
i=1

∫
γi

kφi ds.

On the other hand, the functional L : IΓ (M,R3) → R given by

L(φ) =

∫
φ(∂M)

kφds =

n∑
i=1

∫
γi

kφi ds,
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is constant on the whole IΓ (M,R3). Indeed, the stated boundary conditions imply that the curvature, kφ , of
φ(∂M) = Γ in φ(M), endowed with the 〈·, ·〉-induced metric, does not depend on φ ∈ IΓ (M,R3) because kφ

comes from the projection of the boundary acceleration, Γ ′′, on dφp(Tp M), which is the tangent plane of each φ(M),
since all the immersions have the same Gauss map along the common boundary Γ . This allows us, from now on, to
write k as kφ . In particular, we have

Theorem 3. Let M be a compact surface. Then φ ∈ IΓ (M,R3) is a soliton of the NSM2 with boundary conditions
(Γ , No) if, and only if, (M, φ) is a Willmore surface, that is, φ is a critical point of the action W : IΓ (M,R3) → R,
given by

W(φ) =

∫
M

H2
φdAφ +

∫
Γ

k ds,

with the same boundary conditions.

As a consequence of Theorems 2 and 3, we obtain the conformal invariance of the NSM2.

3. Villarceau circles, Clifford parallelism in the three-sphere and more

Given T a revolution torus in R3, it is well known that T contains two families of circles, the parallels of latitude
and the meridians. However, it is less well known that T contains other circles as well. These are sometimes named
Villarceau circles (1848) and can be found by intersecting T with a bitangent plane. In fact, one can find two families,
F1 = {Υ(t)} and F2 = {Ξ (t)}, of these exotic circles. Two circles of different families intersect in exactly two points
while two circles of the same family not only do not intersect, but they are always linked.

Let us consider the unit three-sphere

S3
= {ζ = (z1, z2) ∈ C2

: |ζ |2 = |z1|
2
+ |z2|

2
= 1}.

Then, we have the usual action S1
× S3

→ S3 defined by

(eit , ζ ) 7→ eit
· ζ = (eit z1, eit z2).

The orbits under this action are great circles (geodesics) of S3. If C and C′ denote any two orbits, then we have

d(ζ,C′) = d(η,C′) for any ζ, η ∈ C.

Moreover, if ζ ∈ C and ζ ′
∈ C′ satisfy d(ζ, ζ ′) = d(C,C′), then any great circle containing ζ and ζ ′ intersects

orthogonally both C and C′. This leads to the following definition. Two great circles, C and C′, in S3 are Clifford
parallel if d(ζ,C′) does not depend on ζ ∈ C. If this is the case, then we write C‖C′.

Given a great circle, C, in S3 and θ ∈ [0, π], we define

Cθ = {ζ ∈ S3
: d(ζ,C) = θ}.

We put C⊥ to denote the great circle associated with the plane, through the origin, that is orthogonal to that
corresponding to C. It is obvious that C0 = C, C π

2
= C⊥, C π

2 −θ = C⊥
θ . Therefore, it is enough to consider

θ ∈ (0, π2 ).
The following properties exhibit the geometry of the above-introduced subsets.

(1) For any θ ∈ (0, π2 ), the set Cθ is the intersection of S3 with a cone in R4
= C2. More precisely, in a suitable

coordinate system (z1, z2) in C2, we can check that Cθ = S3⋂Ωθ , where

Ωθ = {ζ = (z1, z2) ∈ C2
: |z1|

2 sin2 θ − |z2|
2 cos2 θ = 0}.

(2) Furthermore, Cθ can be identified with the following torus

Cθ = {ζ = (z1, z2) ∈ C2
: |z1| = cos θ, |z2| = sin θ}.

(3) For any θ ∈ (0, π2 ), any great circle C and ζ ∈ Cθ , there exist exactly two great circles, C′ and C′′, that are
Clifford parallel to C and contain ζ . This shows that the Clifford parallelism is not an equivalence relation.
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Though the Clifford parallelism is not an equivalence relation, it can be decomposed into two equivalence relations.
Let us sketch how to do it. Given a great circle, C, we have C⊥, so that the planes P, P⊥, through the origin containing
these two great circles satisfy P⊕P⊥

= R4. We also fix an orientation on P and on P⊥ to get the canonical orientation
in R4 according to the above decomposition. Next, define subgroups of O+(P)× O+(P⊥) ⊂ O+(R4) by

G+

C = {(ω; f+ ◦ ω ◦ f −1
+ ) : ω ∈ O+(P)},

G−

C = {(ω; f− ◦ ω ◦ f −1
− ) : ω ∈ O+(P)}

where f+ ∈ Iso+(P,P⊥) (resp. f− ∈ Iso−(P,P⊥)) is an orientation preserving (resp. non-preserving) isometry. It
should be noticed that this construction does not depend on f+ (or f−) since O+(P) is abelian. Now, an orbit under
the G+

C -action is a great circle, say C′, that is called a Clifford parallel to C of the first-kind while the second-kinds of
Clifford parallels, C′′, are obtained via the second subgroup. These are two equivalence relations which are denoted
by C‖

+ C′ and C‖
− C′′. Furthermore, we have the following facts.

(1) The condition C‖C̃ is equivalent to either C‖
+ C̃ or C‖

− C̃.
(2) For each ζ ∈ S3, there exist two great circles through ζ that are Clifford parallel to C, one of the first-kind, C′,

and one of the second, C′′. Furthermore, C′
6= C′′ if ζ ∈ S3

\ (C
⋃

C⊥).

Clifford parallel great circles are nicely related with Villarceau circles through a suitable stereographic projection.
We take ζo ∈ S3

⊂ R4 and consider the stereographic projection Eo : S3
\ {ζo} → R3 which, as is well known, is

the restriction of an inversion in R4 with pole ζo. Now, fix a great circle, say C, going through ζo. In R3, we choose a
coordinate system, {x, y, z}, such that the z-axis is Eo(C\{ζo}) and then, Eo(C⊥) is the unit circle in the {x, y}-plane.

In that setting, it is not difficult to see that Tθ = Eo(Cθ ), θ ∈ (0, π2 ), is a revolution torus around Eo(C \ {ζo}) in
R3. Furthermore, up to similarities, every revolution torus in R3 is of the form Eo(Cθ ) for a suitable value θ ∈ (0, π2 ).
Now, both families of Villarceau circles in Tθ = Eo(Cθ ) are obtained as images under the stereographic projection,
Eo, of the two kinds of great circles in Cθ that are Clifford parallel to C. And so, all Villarceau circles in R3

\ (z-axis)
can be described as follows.

F1 = {Υ(t)} = {Eo(C′) : C′ is first-kind Clifford parallel to C},

and

F2 = {Ξ (t)} = {Eo(C′′) : C′′ is second-kind Clifford parallel to C}.

From now on, we will refer to these circles as first- or second-kind Villarceau circles according to whether they lie in
F1 or F2, respectively.

Notice that in F1 and in F2 we have included a circle that is not a Villarceau circle in a revolution torus around the
z-axis, this circle is Eo(C⊥). From now on we will treat this circle as a Villarceau circle.

4. Villarceau circles as orbits

In the appropriate coordinate system, the action of G+

C on S3 is the usual one described as

G+

C × S3
→ S3, (ϕt , ζ ) 7→ ϕt (ζ ) = eit

· ζ.

Hence, the orbits under this action, that is to say, the first-kind Clifford parallel great circles to C, are nothing but
the fibres of the usual Hopf map, Π : S3

→ S2( 1
2 ), Π (z1, z2) = (z1 z̄2,

1
2 (|z1|

2
− |z2|

2)), where z̄2 is the complex
conjugate of z2. To simplify, we put G+

C = {ϕt : t ∈ R}.
This can be projected down to R3. Indeed, since C is the orbit through ζo ∈ C and we have chosen Eo(C) to be

the z-axis in R3, we have a group of preserving orientation conformal maps in R3
\ (z-axis) associated with C, and

defined by

H+

C = Eo ◦ G+

C ◦ E−1
o = {ψt = Eo ◦ ϕt ◦ E−1

o : t ∈ R}.

In this setting, the orbits in R3
\ (z-axis) associated with H+

C are just the first-kind Villarceau circles over a family of
revolution tori around the z-axis.
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Notice that, given a pair of first-kind Villarceau circles, say γ1 and γ2, then γ1 = Eo(C1) and γ2 = Eo(C2) for
certain great circles that satisfy C‖

+ C1, C‖
+ C2 and so C1‖

+ C2. In other words, those Villarceau circles are images,
via a stereographic projection, of two Hopf fibres. However, they can lie on either the same revolution torus or two
different revolution tori. The former occurs if d(C,C1) = d(C,C2) while the latter happens if d(C,C1) 6= d(C,C2).

Next, we deal with second-kind Clifford parallel circles. As before, in a suitable coordinate system, we put
G−

C = {χt : t ∈ R} and the action of G−

C on S3 is described as

G−

C × S3
→ S3, (χt , (z1, z2)) 7→ χt (z1, z2) = (eit z1, e−it z2).

Similar to the usual Hopf map, the projection map to the quotient space is

Π− : S3
→ S2

(
1
2

)
, Π−(z1, z2) =

(
z1z2,

1
2
(|z1|

2
− |z2|

2)

)
.

As before, the fibres of Π− are nothing but the second-kind Clifford parallel circles to C. Again, let

H−

C = Eo ◦ G−

C ◦ E−1
o = {Eo ◦ χt ◦ E−1

o : t ∈ R}

be the group of conformal maps that leave invariant the second-kind Villarceau circles over a family of revolution tori
around the z-axis.

Next, we just need to see that the isometry J : S3
→ S3, J (z1, z2) = (z1, z̄2) lets us construct the following

commutative diagram:

S3 J
−→ S3

Π ↓ ↓ Π−

S2
(

1
2

)
I d

−→ S2
(

1
2

)
.

Therefore, up to small changes, we can reduce all computations to the case of first-kind Villarceau circles.

5. Solitons in the NSM2 admitting a Villarceau foliation

We denote by HC either H+

C or H−

C . In this section, we deal with the following

Problem 4. To obtain all the solitons of the NSM2 with boundary that are invariant under HC.

In other words, to obtain all the solutions of the field equations that are foliated by Villarceau circles. From now
on, we consider symmetric solutions. We solve completely this problem with a geometric argument that involves the
following steps

• Admissible boundary conditions.
• Reduction of symmetry.
• Using the conformal invariance and the Hopf map to reduce variables.
• The solutions come from clamped elasticae in the two-sphere.

For the sake of simplicity, we just make the computations for the case of first-kind Villarceau circles. Once we have
computed the clamped elasticae in the two-sphere, since we have two maps Π ◦ E−1

0 ,Π− ◦ E−1
0 : R3

\ (z-axis) →

S2( 1
2 ), we obtain the two families of solutions.

5.1. Admissible boundary conditions

It is clear that the admissible boundary conditions, for obtaining H+

C-invariant solutions, must be, themselves,
H+

C-invariant. This yields to the following immediate first constraints

(1) Γ = {γ1, γ2, . . . , γn} is made up of first-kind Villarceau circles.
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(2) No is a unit vector field along Γ with 〈Γ ′, No〉 = 0, which is constructed as follows. Fix points, pi ∈ γi , 1 ≤ i ≤ n,
at each component of Γ . So, γi (t) = ψt (pi ). Next, we choose unit vectors, ni ∈ Tpi R3, with 〈ni , γ

′

i (0)〉 = 0.
Finally, we define

No(γi (t)) = No(ψt (pi )) =
(dψt )pi (ni )

‖(dψt )pi (ni )‖
.

Obviously, the constructed vector field, No, along Γ satisfies dψt (No) = λNo, for a suitable λ > 0, and so it does
not depend on the starting time t ∈ R. Notice also that we have a third vector field, say ν, along Γ determined by
Γ ′(p) ∧ ν(p) = No(p), ∀p ∈ Γ , which is also invariant under H+

C .

However, those conditions are not sufficient to guarantee the existence of symmetric solutions. A deeper analysis
yields a more subtle constraint. In fact, since we are looking for solutions that are foliated by Villarceau circles (and
of course they are connected), then their images in the corresponding space of orbits must be connected curves. In
other words, the transversal submanifold to the foliation is a connected curve. This automatically implies that Γ is
constituted by exactly a pair of orbits. Therefore, the admissible boundary conditions are the above-mentioned ones
with n = 2.

In this setting, given the boundary data (Γ = {γ1, γ2}, No), we choose M = S1
× [a1, a2] a surface with boundary

∂M = (S1
× {a1})

⋃
(S1

× {a2}) and consider IΓ (M,R3), the space of immersions φ : M → R3, that satisfy the
following boundary conditions

(1) φ(S1
× {a1}) = γ1, φ(S1

× {a2}) = γ2,
(2) dφq(Tq M) ⊥ No(φ(q)), for all q ∈ ∂M .

Then, we have the NSM2 with boundary (IΓ (M,R3),S) and the problem is to obtain all its solitons that preserve
the symmetry of the boundary, in other words, to get all the solutions of the associated field equations that are H+

C-
invariant. It should be noticed that this invariance geometrically means that the solutions we are looking for are foliated
by first-kind Villarceau circles.

5.2. Reduction of symmetry

In the above-described setting, the group H+

C naturally acts on IΓ (M,R3). In fact, we have

H+

C × IΓ (M,R3) → IΓ (M,R3), ( f, φ) 7→ f ◦ φ.

Furthermore, the NSM2 Lagrangian S : IΓ (M,R3) → R is obviously H+

C-invariant, i.e., S( f ◦φ) = S(φ), ∀ f ∈ H+

C
and ∀φ ∈ IΓ (M,R3).

The principle of symmetric criticality [23] can be applied in this framework, working in the following way. Let Σ
be the space of immersions, φ ∈ IΓ (M,R3), which are H+

C-invariant, that is f ◦ φ = φ, ∀ f ∈ H+

C . We will refer to
these immersions as symmetric points and notice that we are looking for the solitons in Σ . Then, a symmetric point,
φ ∈ Σ , is a solution in the NSM2 with boundary (IΓ (M,R3),S) if and only if it is a critical point of S : Σ → R.
In other words, the H+

C-invariant solutions of the field equations coincide with the solutions of the H+

C-reduced field
equations.

To compute this restriction, first, we need to identify the space Σ . Therefore, we consider the following map

Φ = Π ◦ E−1
o : R3

\ (z-axis) → S2
(

1
2

)
\ {m},

where m ∈ S2( 1
2 ) stands for the image of the great circle C under the Hopf map, Π : S3

→ S2( 1
2 ). We take the

two-sphere of radius 1
2 in order for Π to be a Riemannian submersion, obtaining that Φ is a conformal submersion.

Now, admissible boundary conditions behave, via that map, as follows. First of all, we observe that Γ = {γ1, γ2}

is applied, via E−1
o , in a pair of Hopf fibres, (C1,C2). Hence Φ(Γ ) = {m1,m2} is a couple of points in S2( 1

2 ) \ {m}.
Furthermore,{

Eui =
dΦpi (ν(pi ))

‖dΦpi (ν(pi ))‖
; Ewi =

dΦpi (No(pi ))

‖dΦpi (No(pi ))‖

}
, 1 ≤ i ≤ 2,

constitutes an orthonormal frame in Tmi S2( 1
2 ), which does not depend on the chosen points pi ∈ γi , 1 ≤ i ≤ 2.
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For any regular curve, α : [s1, s2] → S2( 1
2 ) \ {m}, with α(si ) = mi and α′(si ) = Eui , 1 ≤ i ≤ 2, we denote by

Mα = Φ−1(α) the surface obtained as the stereographic projection of the Hopf tube, Π −1(α), on α. In particular,
Mα is foliated by first-kind Villarceau circles and so it is invariant under the H+

C-action. Therefore, the immersion
φ ∈ IΓ (M,R3) such that φ(M) = Mα obviously lies in Σ . Conversely, if φ ∈ Σ , then we can regard its image,
φ(M), as a surface which is foliated by first-kind Villarceau circles and so it is the image, under the stereographic
projection, of a Hopf tube on a certain curve, with the obvious first-order boundary data. Hence, the space Σ can be
identified with the following class of surfaces

Σ ≡

{
Mα = Φ−1(α)/α : [s1, s2] → S2

(
1
2

)
\ {m}, α(si ) = mi , α

′(si ) = Eui , 1 ≤ i ≤ 2
}
.

We have proved that the symmetric solutions of (IΓ (M,R3), (Γ , No),S), are just the critical points of S /Σ : Σ → R.
Then, we need to characterize the critical points of this action.

5.3. Using the conformal invariance and the Hopf map to reduce variables

As seen in Section 2, the NSM2 is equivalent to the following Willmore problem with boundary [29]

W(φ) =

∫
M

H2
φdAφ +

∫
φ(∂M)

kφds.

In particular, the class of soliton solutions in the NSM2 coincides with the class of Willmore soliton surfaces with
boundary. Furthermore, since the Willmore functional is invariant under the action of H+

C on I (M,R3), then both
problems are also equivalent when reduced via H+

C . In other words, to compute all the symmetric solutions for NSM2,
we only need to compute the critical points of W : Σ → R.

The next idea is to exploit the extrinsic conformal invariance of the Willmore model with boundary. In particular,
Eo : S3

\ {ζo} → R3 is a conformal transformation, which implies that

W(Mα) = W(Φ−1(α)) = W̄(Π −1(α)) =

∫
M
(H̄2

α + R̄α)d Āα +

∫
∂M

k̄αds,

where W̄ stands for the Willmore functional associated with the unit round metric in the three-sphere and so, R̄α is
the sectional curvature along φ ∈ I (M,S3) with φ(M) = Π −1(α).

In this case, Rα = 1 because it is a part of the sectional curvature in a unit round sphere. On the other hand, the
boundary of any of those symmetric immersions giving the Hopf tubes, Π −1(α), is ∂Π −1(α) = {C1,C2}. That is, the
boundary is made up of two great circles in S3, which are geodesics and so k̄α = 0. Therefore, we have

W(Mα) = W̄(Π −1(α)) =

∫
M
(H̄2

α + 1)d Āα.

Now, the mean curvature of complete lifts of curves in a Riemannian submersion with totally geodesics fibers was
computed in [6]. In particular, the mean curvature of a Hopf tube, Π −1(α), is H̄α =

1
2κ , where κ is the curvature

function of the curve α in the two-sphere. Consequently, we have

W(Mα) = W̄(Π −1(α)) =
π

2

∫
α

(κ2
+ 4) ds. (1)

5.4. The solutions come from clamped elasticae in the two-sphere

Hence, the problem of searching the symmetric solutions of the NSM2 with boundary, (IΓ (M,R3), (Γ , No),S) is
reduced to that for clamped elastica in the once-punctured two-sphere. To be precise, in S2( 1

2 ) \ {m} we choose two
points, m1 and m2, unit vectors Eui ∈ Tmi S2 and the space of clamped curves, Λ = {α : [s1, s2] → S2( 1

2 )\{m}/α(si ) =

mi , α
′(si ) = Eui , 1 ≤ i ≤ 2}, and then the variational problem associated with the total elastic energy, E : Λ → R,

given by

E(α) =

∫
α

(κ2
+ 4) ds.
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Theorem 5. Let Γ = {γ1, γ2} be a pair of Villarceau circles in F1 or F2 and No a unit normal vector field along Γ .
Then φ ∈ IΓ (M,R3) is a soliton of NSM2, with boundary conditions (Γ , No), which is foliated by Villarceau circles
if, and only if, either:

(1) φ(M) is the stereographic projection of a Hopf tube on a clamped elastic curve in the once-punctured two-sphere.
(2) φ(M) is the stereographic projection of the complete lifting, via the mapping Π− : S3

→ S2( 1
2 ), of a clamped

elastic curve in the once-punctured two-sphere.

To conclude the algorithm, recall the description of the moduli space of clamped elastic curves in a two-sphere
with radius 1

2 (see [11] and [17] for more details and terminology). Thus, we obtain the first variation formula for E

δE(α)[W ] =

∫
α

〈Ω(α),W 〉ds + [R(α,W )]s2
s1
,

where Ω(α) and R(α,W ) stand for the Euler–Lagrange and boundary operators, respectively, given by

Ω(α) = 2∇
3
T T + ∇T [(3κ2

− 4)T ] + 8∇T T,

and

R(α,W ) = 2〈∇T W,∇T T 〉 − 〈W, 2∇
2
T T + (3κ2

− 4)T 〉,

where ∇ denotes the Levi-Civita connection of S2( 1
2 ), T is the unit tangent vector field of α and W ∈ TαΛ.

On the other hand, we can make the following computations along a curve, ᾱ, in Λ with first-order data (α,W )

W = dᾱ(∂r ), ∇T W = ϑT + dᾱ(∂r T ),

where ϑ = ∂r (log ‖
∂ᾱ
∂t (t, r)‖). Then, we evaluate these formulas along the curve α by making r = 0 and use the

first-order boundary data to obtain the following values at the endpoints

W (si ) = 0, ∇T W (si ) = ϑ(si )Eui , 1 ≤ i ≤ 2.

As a consequence, the boundary operator drops out, [R(α,W )]s2
s1

= 0.
Then, α ∈ Λ is a critical point of the variational problem E : Λ → R if, and only if, Ω(α) = 0 and it happens if,

and only if, the curvature function of α is a solution of the following second-order differential equation

2
d2κ

ds2 + κ(κ2
+ 4) = 0.

These curves will be called clamped elasticae in the two-sphere, S2( 1
2 ) and we will briefly describe them using the free

boundary case. First, notice that this equation admits the obvious constant solution κ = 0 (geodesics). Those clamped
geodesics provide, when lifting via the Hopf map, Clifford tubes with boundary in S3. The stereographic projection of
those Clifford tubes give tubes with boundary in anchor rings with ratio

√
2 as solitons of the NSM2 with boundary,

(IΓ (M,R3), (Γ , No),S) (these solutions were already given in [7]).
When searching for non-constant solutions, we realize that the equation is readily solved by observing the following

identity

d2

du2 cn(u, ρ) = −2ρ2cn3(u, ρ)+ (2ρ2
− 1) cn(u, ρ),

where cn(u, ρ) is the elliptic cosine of Jacobi [11].
Replacing u by λ(s − s0) and making an identification of constants, we readily obtain the general solution of the

equation in the form:

κ(s) = Ccn(λ(s − s0), ρ),

where λ and s0 are arbitrary constants, and where ρ and C are determined as follows:

ρ2
=
λ2

− 2

2λ2 , C2
= 2(λ2

− 2).
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Since ρ and C are thus functions of λ, it is clear that either of them, but not both, may be chosen arbitrarily.
Taking λ2

≥ 2, then ρ2 and C2 are positive. Also, cn(−u, ρ) = cn(u, ρ), so we can take λ ≥
√

2.

Finally the curvature is κ(s) =

√
2(λ2 − 2)cn(λ(s − s0),

√
λ2−2

√
2λ

), where λ ≥
√

2 is a constant.

This family of elasticae belong to a wider class known as wavelike. This name comes from the fact that each of
these elasticae oscillates along an axial geodesic in the two-sphere.

The following two pictures illustrate the shape of our solitons. In fact, they show the same surface from two
different points of view. The foliation by Villarceau circles can be seen clearly.

6. The topological charge

The above-obtained solitons of NSM2 carry topological charges, which can be holographically determined, via the
Gauss–Bonnet formula, from the boundary conditions. Hence if φ ∈ IΓ (M,R3) is a soliton of NSM2 with boundary
conditions (Γ = {γ1, γ2}, N0), then its topological charge is

Q(φ) =

∫
M

GφdAφ = −L(φ) = −

2∑
i=1

∫
γi

ki ds.

Therefore, we need to compute the right hand side in the above expression where γ1 and γ2 are Villarceau circles.
We will restrict ourselves to the case where γ1 and γ2 are first-kind Villarceau circles, since the computations for
second-kind Villarceau circles are similar.

It is clear that any Villarceau circle in R3 intersects in exactly one point the half-plane K = {(x, 0, z) ∈ R3
: x >

0}. Also, we know that two Villarceau circles of the same kind do not intersect. Then, any point of K determines two
Villarceau circles, one of each kind. If

E−1
o (x, 0, z) = (x1, 0, x2, y2) =

(
2x

x2 + z2 + 1
, 0,

2z

x2 + z2 + 1
,

x2
+ z2

− 1

x2 + z2 + 1

)
,

then, the first-kind Villarceau circle, γ : [−π, π] → R3, passing through the point p = (x, 0, z), namely with
γ (0) = p, is given by

γ (t) = Eo(eit x1, eit (x2 + iy2))

=
1

1 − x2 sin t − y2 cos t
(x1 cos t, x1 sin t, x2 cos t − y2 sin t).

Consequently, in the above parametrization, the speed of the Villarceau circle is

‖γ ′(t)‖ =
1

1 − x2 sin t − y2 cos t
, (2)

and so the length and the radius of the Villarceau circle passing through the point p = (x, 0, z) are, respectively

L =

∫ π

−π

‖γ ′(t)‖dt = π
1 + ‖p‖

2

x
, r =

1 + ‖p‖
2

2x
.
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Now, we suppose that γ is one of the Villarceau circles in Γ = {γ1, γ2}. It should be noticed that, though γ has
obviously constant curvature in R3, its curvature function in φ(M) is not constant in general. If the Villarceau circle
is arc length parametrized its curvature function in the soliton is given by

k(s) = −2
(

1

1 + ‖γ (s)‖2

)
〈γ (s), ν(s)〉, (3)

where ν(s) is determined by N0(s) = γ ′(s) ∧ ν(s). This formula is a consequence of the following

Lemma 6. Let N = Eo(T ) be the stereographic projection of a Hopf tube and γ = Eo(C̃) a Villarceau circle in N.
The curvature function of γ in N is given by (3), where ν(s) plays the role of unit normal vector of γ in N.

Proof. Denote by g1 the flat metric on T which is induced by that usual in the unit three-sphere. Now the metric
g2 = E∗

o (〈·, ·〉) is conformal to the above metric. Namely g2 = f g1 where f is the restriction to T of the well known
conformal factor associated with the stereographic projection, Eo. The curvature function of γ in N is just that of C̃
in (T , g2) and it can be nicely obtained, as is well known, in terms of both the curvature function of C̃ in (T , g1) and
the normal variation of the conformal factor. Since C̃ is a geodesic in (T , g1), we obtain

k(s) = −
1

2( f ◦ E−1
o )(γ (s))

〈∇( f ◦ E−1
o )(γ (s)), ν(s)〉,

where ∇ stands for the 〈·, ·〉-gradient. However,

( f ◦ E−1
o )(p) =

(
1 + ‖p‖

2

2

)2

,

and so

∇( f ◦ E−1
o )(γ (s)) =

(
1 + ‖γ (s)‖2

)
γ (s),

which proves the lemma. �

Remark 7. We should point out that all the computations in this lemma are also valid when T is a lift of a curve in
S2( 1

2 ) \ {m} by the map Π−, and hence for second-kind Villarceau circles.

Now, the total curvature of a first-kind Villarceau circle in a soliton is computed using (2) and (3) as follows∫
γ

k(s) ds =

∫ π

−π

k(t)‖γ ′(t)‖dt = −

∫ π

−π

〈γ (t), ν(t)〉dt. (4)

According to the admissible boundary conditions (see Section 5.1), in the soliton, the unit normal vector field along
γ (t) can be obtained from ν(0) = (ν1, ν2, ν3), by

ν(t) =
dψt (ν(0))

‖dψt (ν(0))‖
=

dEo(eit dE−1
o (ν(0)))

‖dEo(eit dE−1
o (ν(0)))‖

.

The integrand in (4) can be computed, by means of a direct long computation that involves the conformal nature of
Eo, in terms of the following data

E−1
o (γ (0)) = (x1, 0, x2, y2), and dE−1

o (ν(0)) = (u1, v1, u2, v2),

with x1u1 + x2u2 + y2v2 = x1v1 − y2u2 + x2v2 = 0 because (u1, v1, u2, v2) ∈ T(x1,0,x2,y2)S3 and it must be a
horizontal vector. The result is

〈γ (t), ν(t)〉 =
u2 sin t + v2 cos t

(1 − y2)(1 − y2 cos t − x2 sin t)
. (5)

It should be noticed that for any N0, γi is not a geodesic in the soliton φ ∈ IΓ (M,R3). In particular, there are no
Villarceau circles that are geodesics in the solitons. However, the total curvature of a Villarceau circle in a soliton can
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vanish. In fact, choose the Villarceau circle through the point (1, 0, 0) ∈ R3, for any N0 its total curvature is∫
γ

k(s) ds = −

∫ π

−π

〈γ (t), ν(t)〉dt = −

∫ π

−π

(u2 sin t + v2 cos t) dt = 0.

The total curvature of any Villarceau circle in a soliton can be computed integrating (5). As we know what happens
when x1 = 1, let us now assume that x1 < 1, so x2

2 + y2
2 > 0, and let us make the change τ = tan t

2 to obtain∫
γ

〈γ (t), ν(t)〉ds =
2

1 − y2

∫
∞

−∞

−v2τ
2
+ 2u2τ + v2(

(1 + y2)τ 2 − 2x2τ + 1 − y2
)
(1 + τ 2)

dτ.

This integral can be evaluated using the partial fractions method. Notice that the first factor in the denominator is
actually quadratic because x2

2 + y2
2 − 1 < 0. Then, we have∫

γ

〈γ (t), ν(t)〉ds =
2

1 − y2

∫
∞

−∞

[
Aτ + B

1 + τ 2 +
Cτ + D

(1 + y2)τ 2 − 2x2τ + 1 − y2

]
dτ.

Then, we get∫
γ

〈γ (t), ν(t)〉ds =
2πB

1 − y2
+

C

1 − y2
2

[
lim

τ→+∞
ln
(1 + y2)τ

2
− 2x2τ + 1 − y2

(1 + w2)τ 2 + 2x2τ + 1 − y2

]

+

[
2D

1 − y2
+

2Cx2

1 − y2
2

]
1 + y2

x2
1

∫
∞

−∞

dτ(
(1+y2)τ−x2

x1

)2
+ 1

.

Consequently, we obtain∫
γ

〈γ (t), ν(t)〉ds =
2π

1 − y2

[
B +

1
2

(
D +

Cx2

1 + y2

)]
.

An easy computation allows one to obtain the following values for constants,

B =
x1u1

1 − x2
1

, C =
x1v1(1 + y2)

1 − x2
1

, D =
−x1(u1 + v1x2)

1 − x2
1

,

which gives∫
γ

k(s) ds = −

∫ π

−π

〈γ (t), ν(t)〉dt = 2π
u1

(1 − y2)(1 + x1)
. (6)

This formula has been calculated for the case x1 < 1, but it can be easily seen that it works for the case x1 = 1 too.
The right hand side of (6) can be transformed in terms of p = (x, 0, z) and ν(0) = (ν1, ν2, ν3) using that

x1 =
1
r
, y2 =

‖p‖
2
− 1

‖p‖2 + 1
, u1 =

2ν1(‖p‖
2
+ 1)− 4x〈p, ν(0)〉

(‖p‖2 + 1)2
,

to obtain∫
γ

k(s) ds = −
2π

1 + r
〈p − p̃, ν(0)〉, (7)

where p̃ = (r, 0, 0).
All these computations imply important consequences. The first one allows one to control the total curvature of a

Villarceau circle in the stereographic projection of a Hopf tube.

Theorem 8. Let N = Eo(T ) be the stereographic projection of a Hopf tube and γ : [−π, π] → N a Villarceau circle
with radius r which is determined by the point p = γ (0) = (x, 0, z). Then, the total curvature of this curve in N
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satisfies∫
γ

k(s) ds ∈

[
−2π

√
r − 1
r + 1

, 2π

√
r − 1
r + 1

]
.

Furthermore, the total curvature of γ attains its maximum and minimum if, and only if, the Gauss map of N along
γ is respectively

N0(γ (t)) = ∓

dψt

(
γ ′(0) ∧

p− p̃
‖p− p̃‖

)
∥∥∥dψt

(
γ ′(0) ∧

p− p̃
‖p− p̃‖

)∥∥∥ , (8)

where p̃ = (r, 0, 0).

Proof. Just combine (7) with the following facts: First if the trace of γ is S1
× {0}, that is Eo(C⊥), then the total

curvature vanishes identically no matter what the Gauss map of N is, and so the result holds trivially. Otherwise,
notice that 〈γ ′(0), p − p̃〉 = 0. �

Remark 9. The first part of this theorem remains valid when T is a lift of a curve in S2( 1
2 ) \ {m} by the map Π−. In

this case the total curvature of γ attains its maximum and minimum if, and only if, the Gauss maps of N along γ are
respectively

N0(γ (t)) = ∓

dχt

(
γ ′(0) ∧

p− p̃
‖p− p̃‖

)
∥∥∥dχt

(
γ ′(0) ∧

p− p̃
‖p− p̃‖

)∥∥∥ , (9)

where p̃ = (r, 0, 0).

Remark 10. Given a Villarceau circle γ in R3 of radius r , and given any value % ∈

[
−2π

√
r−1
r+1 , 2π

√
r−1
r+1

]
, there

exists a unit vector field No along γ and a soliton M with boundary conditions including (γ, No), such that the total
curvature of γ in M takes the value

∫
γ
κ = %.

As a second consequence, the topological charge carried by a soliton can be computed. Indeed, we have

Theorem 11. Let φ ∈ IΓ (M,R3) be a soliton of NSM2 with boundary conditions (Γ = {γ1, γ2}, N0). Then it carries
a topological charge given by

Q(φ) = 2π
2∑

i=1

〈pi − p̃i , N0 ∧ γ ′

i (0)〉

1 + ri
,

where ri is the radius of γi and p̃i = (ri , 0, 0).

Certainly, we can fix a pair of Villarceau circles Γ = {γ1, γ2} and then move the Gauss map, N0, of solitons along
the boundary Γ , to get, according to Theorem 8 and Remark 9, the maximum and the minimum topological charge.

7. Conclusions

We have developed a geometric algorithm for obtaining the whole moduli space of solitons in the NSM2 that are
foliated by Villarceau circles. In particular, this provides the first known examples of solitons in the NSM2 that are
foliated by nonparallel circles, in contrast with the Plateau integrable system case where such solutions do not exist.
The criterion reduces the search for those solitons to that for clamped elastic curves in the once-punctured two-sphere
of radius 1

2 .
The main ingredients involved in the method are: the principle of symmetric criticality, the Gauss–Bonnet formula,

the extrinsic conformal invariance of the NSM2 and the theory of clamped elasticae.
The algorithm works as follows:
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(1) Let ω : I ⊂ R → R be defined by

ω(s) =

√
2(λ2 − 2) cn

(
λs,

√
λ2 − 2
√

2λ

)
,

where λ is a constant such that λ ≥
√

2 and cn(s, ρ) is the elliptic cosine of Jacobi.
(2) In the once-punctured two-sphere S2( 1

2 ) \ {m}, we choose an arc length curve α : I ⊂ R → S2( 1
2 ) \ {m} with

curvature function ω. For any [s1, s2] ⊂ I , we put α(si ) = mi , α′(si ) = Eui and Ewi to denote the unit normal in
mi , 1 ≤ i ≤ 2. Now, let Ms2

s1 (α) = Eo(Π −1 (α([s1, s2]))), where Eo is the stereographic projection from ζo ∈ S3

with Π (ζo) = m.
(3) If Ci = Π −1(mi ), then Ms2

s1 (α) is a surface with boundary ∂Ms2
s1 (α) = Γ = {Eo(C1), Eo(C2)} which is foliated

by Villarceau circles.
(4) If W is the horizontal lift along {C1,C2} such that dΠ (W ) = Ewi , 1 ≤ i ≤ 2, then

No =
dEo(W )

‖dEo(W )‖
,

is a unit vector field along Γ = {Eo(C1), Eo(C2)} which is HC -invariant. Hence, Ms2
s1 (α) is a soliton in the NSM2

with boundary conditions (Γ , No).

Furthermore, we should point out that the very same construction works using Π− instead of Π . Furthermore, all
the solitons in the NSM2 that admit a Villarceau foliation are obtained this way.

The curvature function of a Villarceau circle in a soliton has been obtained. By evaluating the corresponding total
curvature, we show that these solitons carry topological charges which can be holographically computed using the
Gauss–Bonnet formula. Since those topological charges only depend on the boundary conditions, they are the same
for fixed boundary conditions (Γ = {γ1, γ2}, No).

Finally, using the terminology of the theory of submersions, the complete class of Villarceau foliated solitons in
the NSM2 can be described as follows: First, consider the maps Φ,Ψ : R3

→ S2( 1
2 ) ⊂ R3, given by

Φ(x, y, z) =

(
4xz + 2y(∆ − 1)

(∆ + 1)2
;

4yz − 2x(∆ − 1)

(∆ + 1)2
;

2∆ − 4z2
−

1
2 (∆ − 1)2

(∆ + 1)2

)
,

Ψ(x, y, z) =

(
4xz − 2y(∆ − 1)

(∆ + 1)2
;

4yz + 2x(∆ − 1)

(∆ + 1)2
;

2∆ − 4z2
−

1
2 (∆ − 1)2

(∆ + 1)2

)
,

where ∆ = x2
+ y2

+ z2. Certainly, these are conformal Riemannian submersions with the usual metrics. However,
if one removes the south pole, m = (0, 0,− 1

2 ), of S2( 1
2 ), then the above maps become principal circle fibre bundles

with structure groups H+

C and H−

C , respectively

Φ,Ψ : R3
\ (z-axis) → S2

(
1
2

)
\ {m}, Φ = Π ◦ E−1

o , Ψ = Π− ◦ E−1
o ,

and the fibres of both fibrations are the Villarceau circles of first and second-kind, respectively. Now, a surface in
Euclidean three-space is Villarceau foliated if, up to motions, it is the complete lifting, via Φ or Ψ , of a curve in the
two-sphere. In particular, since the NSM2 is invariant under conformal changes in the Euclidean metric, the principle
of symmetric criticality allows one to get the Villarceau foliated solitons as complete liftings of clamped pieces of
elasticae in S2( 1

2 ) \ {m}.
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